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Abstract: When estimating the causal effect of an exposure of 
interest on change in an outcome from baseline, the choice between 
a linear regression of change adjusted or unadjusted for the baseline 
outcome level is regularly debated. This choice mainly depends on 
the design of the study and the regression-to-the-mean phenomena. 
Moreover, it might be necessary to consider additional variables 
in the models (such as factors influencing both the baseline value 
of the outcome and change from baseline). The possible combina-
tions of these elements make the choice of an appropriate statisti-
cal analysis difficult. We used directed acyclic graphs (DAGs) to 
represent these elements and to guide the choice of an appropriate 
linear model for the analysis of change. Combined with DAGs, we 
applied path analysis principles to show that, under some func-
tional assumptions, estimations from the appropriate model could 
be unbiased. In the situation of randomized studies, DAG inter-
pretation and path analysis indicate that unbiased results could be 
expected with both models. In the case of confounding, additional 
(and sometimes untestable) assumptions, such as the presence of 
unmeasured confounders, or effect modification over time should 
be considered. When the observed baseline value influences the 
exposure (“cutoff designs”), linear regressions adjusted for base-
line level should be preferred to unadjusted linear regression analy-
ses. If the exposure starts before the beginning of the study, linear 

regression unadjusted for baseline level may be more appropriate 
than adjusted analyses.

(Epidemiology 2015;26: 122–129)

In clinical epidemiology, we sometimes need to estimate 
the effect of an exposure of interest E (eg, an antihyperten-

sive treatment) on change from baseline of a time-dependent 
quantitative outcome (eg, blood pressure at time t, denoted 
as BP t( )). The exposure E is observed at the beginning t1 of 
the study (although it may have occurred before the beginning 
of the study), and a change score is defined as the difference 
ΔBP in blood pressure between the beginning t1 and the end 
t2 of the study:

∆BP BP t BP t= −( ) ( )2 1

Two methods of estimating the effect of E on change from 
baseline have been regularly discussed: computing a linear 
regression of ΔBP adjusted for baseline value BP(t1) (some-
times called analysis of covariance, when the exposure of 
interest is categorical) or unadjusted for baseline value (some-
times called “simple analysis of change score”).1 For the indi-
vidual person i (i = 1, …, I), the linear regression of ΔBP on E 
adjusted for BP(t1) is as follows:

∆BP BP t Ei BP i E i i= + + +µ τ τ ε1 1( )
	 (1)

It is known that the regression coefficient τE can also be esti-
mated using a linear regression of BP(t2) on E adjusted for 
BP(t1):

2

BP t BP t Ei i E i i( ) ( ) ( )2 1 11= + + + +µ τ τ ε

The linear regression of ΔBP on E unadjusted for BP(t1) is as 
follows:

∆BP Ei E i i= + +µ τ ε′ ′ ′
	 (2)

The causal effect of E on ΔBP is estimated by the regression 
coefficients τ E or τ E ′  according to the model chosen. In some 
situations, the models can lead to very different results. This 
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paradox was pointed out by Lord3 in the case of a nonrandom-
ized study exploring the effect of sex on weight change.

In the literature, the choice between a model adjusted 
or unadjusted for the baseline value of the outcome is usually 
based on considerations about the design of the study and the 
regression-to-the-mean phenomena. Regarding study design, 
Van Breukelen showed that, compared with linear regressions 
of ΔBP unadjusted for BP(t1), adjusting for BP(t1) provides 
more power in randomized studies but may be more biased 
in nonrandomized studies.4 Senn also showed the value of 
adjusting for baseline outcome level to obtain unbiased esti-
mates of the exposure in randomized studies as well as in 
“cutoff designs” (studies in which subjects are allocated to 
one of the exposure groups according to their baseline value). 
In addition, he stated that in observational studies where 
baseline values are different between exposure groups, both 
adjusted and unadjusted models for BP(t1) would probably 
give biased results.1

This regression-to-the-mean phenomenon results from 
intraindividual variability and measurement error on the base-
line outcome value (a short illustration is given in the eAppen-
dix; http://links.lww.com/EDE/A839).5,6 Based on directed 
acyclic graphs (DAGs) and in the case of a nonrandomized 
study, Glymour et al7 showed that adjusting for baseline out-
come level could lead to a biased estimate when the outcome is 
measured with error, whereas models unadjusted for baseline 
level could give unbiased results. Van Breukelen4 indicated 
that in the case of “cutoff design” studies, regression-to-the-
mean results in a spurious association between the exposure 
and change from baseline, which is correctly controlled by 
adjusting for baseline value, but is ignored with unadjusted 
linear regressions. On the contrary, in nonrandomized studies 
with baseline values that differ between preexisting exposure 
groups, there are some situations in which not adjusting for 
baseline value rather than adjusting gives unbiased estimates. 
Generally, any spurious association between E and change 
ΔBP (ie, not resulting from a direct or indirect effect of E) 
needs to be controlled.

It is interesting to point out that all these recommenda-
tions depend on the causal relation between the exposure E 
and the baseline level of the outcome BP(t1).

Beyond adjusting for the baseline value of the outcome, 
it is worth considering the role of other relevant factors in 
the analysis. For example, Glymour et al7 mentioned factors 
occurring before the beginning of the study which can influ-
ence the outcome BP(t1) at time t1 as well as change of the out-
come during the study. They showed how this “horse-racing 
effect” (using Peto’s expression)8 can bias the estimation of 
the effect of E on change when computing a linear regres-
sion adjusted for baseline level. Clarke9 explicated a typical 
example in which age at the beginning of the study could be 
a causal factor for both the baseline value of the outcome and 
change from baseline. Under certain functional hypotheses, 
he suggested inclusion of E × age(t1) interaction terms in 

models of change from baseline when estimating the causal 
effect of E on change.

All these elements are related to the underlying causal 
structure, which can be described explicitly by DAGs. Apply-
ing DAGs more systematically in studies of change from base-
line could be useful in guiding the statistical analyses.

Our aim was to guide the choice of a statistical model 
(linear regression, adjusted or unadjusted for baseline out-
come level) to estimate the causal effect of an exposure 
on change in outcome, using DAGs to represent a wide 
range of situations characterized by various study designs, 
regression-to-the-mean phenomena, and other relevant vari-
ables, such as pre-existing common factors (such as age) or 
additional confounders. We used graphical rules (like the 
d-separation rule) to interpret DAGs. These rules enable the 
analyst to identify potential biases when computing a model 
adjusted or unadjusted for the baseline blood pressure level. 
In general, estimating causal effects from variables mea-
sured with error can result in measurement bias. However, 
under additional structural and functional assumptions (no 
measurement error on the exposure E, outcomes following 
an approximately Gaussian distribution with a sufficiently 
large sample size and assuming a classic error measurement 
scheme as described below), path analysis principles can be 
applied in complement to DAG rules to show how the causal 
effect of interest between the exposure E and the latent 
change from baseline ΔBP could be estimated unbiasedly 
from the observed change from baseline ΔBP* despite error 
on BP measurement.

Along with the graphical interpretation, we simulated 
data sets compatible with the causal structure of the DAGs 
and estimated the effect of the exposure on change applying 
both types of linear regression. Generation of the simulated 
data sets is described in the eAppendix; http://links.lww.com/
EDE/A839, detailing the links between DAGs and algebra, 
and the links between models of change from baseline (ΔBP) 
and models of an outcome at a given time (BP(t)).

For simplicity, we will deal with a binary exposure (E = 
1 for exposure vs. E = 0 for nonexposure). We focused on the 
situation of a complete and equal follow-up for every partici-
pant; in the case of variable follow-up, one would have to dis-
cuss additional hypotheses about independence of the length 
of follow-up with other variables in the system.

This article is organized according to the causal rela-
tion between the exposure E and the baseline level of the out-
come BP(t1). The next section focuses on randomized studies. 
Next, we describe the case of nonrandomized studies with 
confounding factors influencing the exposure E, BP t( )1  and 
ΔBP. Following that, we describe the case of nonrandomized 
studies in which the observed baseline value of blood pres-
sure influences the exposure E (“cutoff designs”). Then, we 
describe nonrandomized studies where the exposure starts 
before the beginning of the study. Finally, discussion and con-
cluding remarks are given.
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We will use the following notations for two variables X 
and Y: βX

Y  is the path coefficient of X→Y, σ X
2  is the variance of 

X, and σ X Y,  is the covariance between X and Y.

Randomized Trials
Figure 1A and B represents two causal structures cor-

responding to randomized trials. The exposure E is inde-
pendent of the baseline blood pressure BP(t1) because of 
randomization. The outcome ΔBP is defined by the function 
∆BP BP t BP ti i i= −( ) ( )2 1 . The manner in which the three vari-
ables BP(t1), BP(t2), and ΔBP could be represented in a DAG 
has been subject to debate.10 Because of the deterministic 
nature of the relation among ΔBP, BP(t1), and BP(t2) whatever 
the level of the exposure E:

•	 �BP(t2) and E are always conditionally independent given 

BP(t1) and ΔBP, and

•	 �ΔBP and E are always conditionally independent given 
BP(t1) and BP(t2).

The “inductive causation algorithm” described by Pearl11(ch. 2)  
can be used as a tool to recover DAG structures from conditional 
independence relation. Pearl states that a pair of variables A and 
B cannot be connected by an edge if a set of variable SAB can be 
found such that A and B are conditionally independent given SAB. 
Consequently, we can neither draw any direct effect from E to 
BP(t2) nor from E to ΔBP in a DAG including all four variables: 
BP(t2) has to be deleted from a DAG showing E, BP(t1), and 
ΔBP to represent the causal effect of E on change ΔBP. It is pos-
sible to depict a causal structure showing E, BP(t1), and BP(t2) 
(without ΔBP), but such a DAG is not much help in encoding 
the relation between E and ΔBP. Examples of algebraic relation 
between the effect of E on ΔBP and the effect of E on BP(t2) 
are detailed in the eAppendix; http://links.lww.com/EDE/A839.

From the DAG of Figure 1A, one can discuss the possi-
bility that BP(t1) influences ΔBP (such as through an interme-
diate and unmeasured mechanism represented by the variable 
M in Figure 1B).

In the DAGs in Figure 1, we added a set of pre-existing 
variables P with a causal influence on both BP(t1) and ΔBP. For 
example, the set P can include age at the beginning of the study 
(age t( )1 ) which can be used to model the natural evolution of 
blood pressure with aging, as in the simulated examples (in this 
approach, we assume no cohort effects to simplify the model).

We used the notation BP t* ( )1  and ΔBP* for the observed 
blood pressure and change values, respectively.12 The observed 
blood pressure is influenced by the unmeasured (latent) blood 
pressure BP(t1) and BP(t2) and intraindividual terms denoted 
UBP1 and UBP2 (which can include intraindividual variability 
and measurement error). We assume that BP t*( )1  and BP t*( )2  
are defined according to a classic measurement error scheme 
in which

• BP t BP t Ui i BP i
*

,( ) ( )1 1 1= +
• BP t BP t Ui i BP i

*
,( ) ( )2 2 2= +

•	 �UBP1 and UBP2 are independent exogenous variables from 
a Gaussian distribution of mean 0 and variance σU

2 .

The observed change score is denoted ΔBP* and is defined 
by ∆ ∆BP BP U Ui i PA i PA i

*
, ,= + −2 1 . From the assumptions 

regarding functional relation among BP(t1), BP t*( )1 , ΔBP, 
and ΔBP*, we have the following path coefficients values: 
β β βBP t

BP t
U
BP t

BP
BP

BP( )
( ) ( )* * *

1

1

1

1 1= = =∆
∆  and βU

BP
BP1

1∆ * = − . Because we 
estimate the causal effect of the exposure on ΔBP from the 
observed variable ΔBP*, the regression models become:

•	 adjusted for baseline level:

∆BP BP t E E Pi BP i E i i i i
* * * * * *( ) ,= + + + ( ) +µ τ τ ε1 1 φ 	 (3)

•	 unadjusted for baseline level:

∆BP E E Pi E i i i i
* * * *,= + + ( ) +µ τ ε′ ′ ′ ′φ 	 (4)

where the effect of the exposure on the observed change score 
is estimated by coefficients τ E

*  and τ E
* ′  and where the func-

tions ϕ and ϕ' can include interaction terms between E and 
age(t1) as in the simulated examples.

Graphical rules and conditions for interpreting DAGs 
and identifying causal effects are described elsewhere.11,13 To 
facilitate the interpretation of the DAGs, readers can delete the 
arrow E→ΔBP (showing the null hypothesis). Applying these 
graphical rules in causal structures of Figure 1, we can see 
that the causal effect of the exposure E on change ΔBP cor-
responds to the direct path E→ΔBP. As there is no unblocked 
back-door path between E and ΔBP, the potential expecta-
tion of ΔBP that would be observed if E was fixed to E = e, 
e do∆BP E e( )=( ) (using Pearl’s notation) is identifiable; it can 
be estimated by E BP E e∆ =( ), indicating that the causal effect 
of E on ΔBP can be estimated by the coefficient τ E ′  of the 

E
A B

BP(t1) BP

BP(t1)*

UBP1

BP∆ ∆

∆∆

*

E

BP(t1)*

UBP1

BP*

P P

BP(t1) BPM

UBP2 UBP2
FIGURE 1.  Causal structures corresponding to randomized tri-
als. Regression to the mean is represented in each subfigure. UBP1 
and UBP2 denote intra-individual variability and measurement 
error in blood pressure. P is a set of pre-existing variable with a 
causal influence on BP(t1) and ΔBP. Subfigure A represents the 
assumption that BP(t1) does not influence ΔBP. Subfigure B rep-
resents a causal influence of BP(t1) on ΔBP through an unmea-
sured intermediate variable M.
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linear regression unadjusted for BP(t1) (model 2).11 The coef-
ficient τ E ′  cannot be estimated directly using model 2 because 
ΔBP is unobserved; however, by applying a path analysis we 

can easily show that τ
σ

σ

σ

σ
β τE

E BP

E

E BP

E
BP
BP

E
* , ,* *′ ′= = × =∆ ∆

∆
∆

2 2 ,  

where τ E
* ′  is estimated using model 4 with the observed 

change score ΔBP*.14 In addition, adjusting for BP t*( )1  does 
not activate any back-door path between E and ΔBP*, and thus 
τ τE E

* *′ =  and the causal effect of E on ΔBP could be estimated 
without bias by adjusting for BP*(t1) in linear regressions 
(model 3) as well as without adjusting for BP*(t1) (model 4).

The mean bias and standard error of the effect of E on 
ΔBP estimated from model 3 and model 4 applied on the simu-
lated data are described in the Table. Both models gave unbi-
ased estimations of the effect of E on ΔBP in causal structures 
of Figure 1, with smaller standard error using the linear regres-
sion adjusted for BP*(t1). The greater power of this model was 
an expected result in randomized trials.4 Vickers15 showed that:

•	 �power increases on an absolute scale for both models 
when the correlation between baseline and follow-up 
values is higher;

•	 �with smaller correlations between baseline and follow-
up values, baseline-adjusted models are comparably 
more efficient than the unadjusted models.

Nonrandomized Studies with Confounding 
Factors Between the Exposure and the 
Outcome

In Figure 2A and B, the two initial causal structures have 
an additional baseline confounder (or a set of confounders) 
C that influences the exposure E as well as BP(t1) and ΔBP. 

As in the previous section, pre-existing variables P (such as 
age at the beginning of the study) can influence BP(t1) and 
ΔBP. Interestingly, when confounders C have the same effect 
on BP(t1) as on BP(t2), they do not affect change over time in 
blood pressure so that Figure 2A and B can be simplified into 
the structures of Figure 2C and D. One could consider these 
causal structures under some additional functional assump-
tions such as no modification of the effect of C on BP(t) over 
time. Because the situation of common causes of E and BP(t) 
does not equate to common causes of E and ΔBP, simplifying 
the causal structure might not appear straightforward.

When All Baseline Confounders C Are Measured
In such a situation, we can block all back-door paths 

between E and ΔBP*. The causal effect of E on ΔBP* is 
thus identifiable and we can estimate without bias the effect 
of E on ΔBP using linear regression analyses adjusted for 
the confounders C, whether or not BP*(t1) is adjusted for. 
Assuming no effect modification by C, we would use the fol-
lowing models:

–	 adjusted for baseline level:

∆BP BP t E C E Pi BP i E i C i i i i
* * * * * * * *( ) ,= + + + + ( ) +µ τ τ τ ε1 1 φ 	(5)

–	 unadjusted for baseline level:

∆BP E C E Pi E i C i i i i
* * * * * *,= + + + ( ) +µ τ τ ε′ ′ ′ ′ ′φ  	 (6)

When Some Baseline Confounders C are Unmeasured
In this case, the estimation of the causal effect of 

the exposure E on ΔBP is expected to be biased, with the 

TABLE.   Mean Bias and Standard Error (in mmHg) of the Estimation of the Effect of the Exposure E on Blood Pressure Change 
(ΔBP), Using Linear Regressions Adjusted for BP*(t1) (Model 3) or Unadjusted for BP*(t1) (Model 4), in Simulated Data Sets 
Compatible with the Causal Structures Represented in Figures 1–4

Figures
Regression  

Model
Graph 

Interpretation
Mean 
Bias SE

Graph  
Interpretation

Mean 
Bias SE

Graph 
Interpretation

Mean 
Bias SE

Figure 1 Subfigure A Subfigure B

 �������R andomized study Adjusted for BP*(t1) Unbiased 0.06 1.42 Unbiased 0.04 1.35 — — —

Unadjusted for BP*(t1) Unbiased 0.06 1.50 Unbiased 0.05 1.42 — — —

Figure 2 Subfigure A Subfigure C Subfigure D

 �������N onrandomized study 

with unmeasured 

confounder C

Adjusted for BP*(t1) Biased 1.24 1.81 Biased 0.77 1.62 Biased 1.04 1.75

Unadjusted for BP*(t1) Biased 0.93 1.56 Unbiased −0.05 1.66 Biased 0.58 1.69

Figure 3 Subfigure A Subfigure B Subfigure C

 �������N onrandomized study 

BP*(t1) influences E

Adjusted for BP*(t1) Unbiased 0.19 1.99 Unbiased 0.18 1.95 Biased 1.17 1.65

Unadjusted for BP*(t1) Biased −1.64 1.41 Biased −1.46 1.57 Biased 0.40 1.48

Figure 4 Subfigure A Subfigure B

 �������N onrandomized study 

E influences both 

BP(t1) and ΔBP

Adjusted for BP*(t1) Biased −8.75 4.08 Biased −6.86 5.76 — — —

Unadjusted for BP*(t1) Unbiased 0.00 0.75 Unbiased 0.05 0.85 — — —

In each scenario, 1050 samples of size 500 have been simulated according to the causal structures represented in Figures 1–4.
SE indicates standard error of the estimated effect of E on ΔBP.
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notable exception of applying a regression unadjusted for 
BP*(t1) in Figure 2C:

(i) �Applying a linear regression adjusted for BP*(t1) but unad-
justed for some unmeasured confounders C (model 3),  

the estimation of the effect of E on ΔBP by τ E
*  is expected 

to be biased due to the following back-door paths in all 
structures of Figure 2:
•	 �the back-door path resulting from adjusting for 

the collider BP t*( )1 , which creates a spurious cor-

relation between BP(t1) and UPA1: E←C→BP(t1) 

- - - UPA1→ΔBP*;
•	 �two potential back-door paths that cannot be blocked if 

C and M are unmeasured: E←C→ΔBP→ΔBP* in Fig-

ure 2A and B, and E←C→BP(t1)→M→ΔBP→ΔBP* 
in Figure 2B and D.

(ii) �Applying a linear regression model unadjusted for 
BP*(t1) (model 4), the estimation of the effect of E on 

ΔBP by τ E
* ′  is expected to be biased because of the fol-

lowing back-door paths in Figure 2A, B, and D where 
C and M are unmeasured:

•	 �the unblocked back-door path E←C→ΔBP→ΔBP* 
(Figure 2A and B);

•	 �the unblocked back-door path E←C→BP(t1)→M→ 

ΔBP→ΔBP*(Figure 2B and D).

(iii) �However, in the causal structure depicted in Figure 
2C, there are only two back-door paths between E 

and ΔBP*: E←C→BP(t1)→BP*(t1)←UBP1→ΔBP* 

and E←C→BP(t1)←P→ΔBP→ΔBP*. These back-
door paths are blocked when one does not condi-

tion on BP*(t1) so that the causal effect of E on ΔBP 
could be estimated unbiasedly by the coefficient 

τ
σ

σ
β τE

E BP

E
BP
BP

E
* , *′ ′= × =∆

∆
∆

2  applying an unadjusted 

regression for the baseline value of the outcome 
(model 4), despite the unmeasured set of variables C.

In the Table, we show illustrative results from simulated data 
sets compatible with the causal assumptions in Figure 2, where 
C is a binary unmeasured confounder with no modification of 
the effect of E by C, and where the direct effect of C→BP(t) is 
either modified by age(t1) (Figure 2A) or unmodified by age(t1) 
(Figure 2C and D). These results are consistent with the above 
graphical interpretation completed by path analysis. We did not 
simulate data from Figure 2B as they would not provide addi-
tional information to the simulations from Figure 2A and D.

Nonrandomized Studies in Which the Observed 
Baseline Outcome Influences the Exposure

In Figure 3A and B, we add a causal influence from the 
observed blood pressure BP t*( )1  to the exposure E in the causal 
structures of Figure 1. For example, an antihypertensive treatment 
may be more frequently given to patients with higher observed 
blood pressure at the beginning of the study. Such a causal struc-
ture also corresponds to the cutoff design mentioned by Senn.1

The estimate of the causal effect of E on ΔBP is expected to 
be biased using a linear regression unadjusted for BP*(t1) (model 
4), because the association between E and ΔBP* estimated by 
the coefficient τ E

* ′  corresponds to the indirect path of interest 
E→ΔBP→ΔBP* and one or two unblocked back-door paths:

–	 E←BP t*( )1 ←UBP1→ΔBP* in Figure 3A and B;

–	 E←BP t*( )1 ←BP(t1)→M→ΔBP→ΔBP* in Figure 3B.

Another back-door path is present in Figure 3A and B, 
E←BP t*( )1 ←BP(t1)←P→ΔBP→ΔBP*, but it can be blocked 
by adjusting for P.

In using the linear regression analysis adjusted for base-
line level (model 3), the adjustment for BP t* ( )1

 blocks all 
these back-door paths and the estimated coefficient τ E

*  is only 
explained by the indirect path E→ΔBP→ΔBP*. The causal 
effect of E on ΔBP could be estimated without bias by the coef-
ficient τ E

* , as we can see by applying the following path analysis:

τ
σ

σ
σ

σ
β

σ
σE

E BP

E

E BP

E
BP
BP E BP

E

* , * , * ,= = × =∆ ∆
∆
∆ ∆

2 2 2
.

P

E

BP(t1) BP

BP*(t1)
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FIGURE 2.  Causal structures with confounders C between the 
exposure E and change ΔBP. Subfigures A and C represent the 
assumption that BP(t1) does not influence ΔBP. Subfigures B 
and D represent a causal influence of BP(t1) on ΔBP through an 
unmeasured intermediate variable M. Subfigures C and D rep-
resent the assumption that confounder C does not influence 
ΔBP (except through the exposure E).
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Consistent results from simulated data sets compatible with 
the causal assumptions in Figure 3A and B are presented in 
the Table.

This situation could be extended to a causal structure 
in which pre-existing measured values of the “outcome” 
variable confounds the relation between E and change from 
baseline. A simple example is given in Figure 3C, where 
BP(t0) is a pre-existing value of blood pressure, BP*(t0) 
rather than BP*(t1) influences E, and the set of pre-existing 
variables P could include an age variable age(t0). These vari-
ables BP*(t0) and P are not usually collected and are there-
fore unavailable for analysis. In this DAG, the back-door path 
E←BP*(t0)←BP(t0)←P→ΔBP→ΔBP* connects E to ΔBP*. 
If BP*(t0) and P are unmeasured, it cannot be blocked by 
adjusting for BP*(t1), resulting in a bias when estimating the 
causal effect of E on ΔBP* using model 3. In the simulated 
data set derived from Figure 3C, we can see that computing 
models 3 or 4 gave biased estimations of the causal effect of E 
on ΔBP (Table). In the example of Figure 3C, one could adjust 
for BP*(t0) to get an unbiased estimation of the causal effect of 
E on ΔBP. In a more general way, it can be useful to charac-
terize the pre-existing evolution of the “outcome” variable.16

A final point on cutoff designs is that the positivity 
assumption should be examined carefully. This assumption is 
needed to identify causal effects; it holds when the probability 
of being exposed to every level of exposure is greater than 
zero for every combination of the values of the confounders 
in the population.17 For example, there is a clear positivity 
violation in a cutoff design where all subjects with BP*(t1) < 
150 mmHg are unexposed to E and all subjects with BP*(t1) ≥ 
150 mmHg are exposed to E. The positivity violation can be 
examined using propensity scores or by a descriptive tabular 
analysis of the exposure according to combinations of con-
founder values.17

Nonrandomized Studies in Which the Exposure 
Starts Before the Beginning of the Study
In Figure 4, the causal structures differ from the previous ones 
by an exposure that starts before the beginning of the study 
and influences both BP(t1) and ΔBP, as in the examples given 
by Lord and Glymour et al.3,7

In the causal structures of Figure 4, there is no unblocked 
back-door path between the exposure E and the observed 
change score ΔBP*. The effect of E on ΔBP is explained by 

one or two paths, resulting in a causal effect equal to 
σ

σ
E BP

E

,∆
2

:

–	 E→ΔBP in Figure 4A and B;

–	 and E→BP(t1)→M→ΔBP in Figure 4B.

This effect could be estimated without bias by the coefficient 
τ E

* ′  using a linear regression unadjusted for BP*(t1) (model 4): 

τ
σ

σ
β

σ
σE

E BP

E
BP
BP E BP

E

* , * ,’= × =∆
∆
∆ ∆

2 2
.

Using the linear regression analysis adjusted for BP*(t1) 
(model 3), a spurious correlation between BP(t1) and UBP1 
is created and adds a back-door path between E and ΔBP*: 
E→BP(t1) - - - UBP1→ΔBP*. This back-door path biases the 
estimation of the causal effect of E on ΔBP, as it is included 
in the association estimated by the coefficient τ E

*  of model 3.
Results from the simulated data sets were consistent 

with the graphical interpretation (Table).

DISCUSSION
The approach, based on DAGs with some functional 

hypotheses to carry out path analyses, confirms the lack of bias 
in randomized studies, whatever the chosen model. It clarifies 
why adjusting for the observed baseline outcome value can be 
recommended in many studies in which the baseline outcome 
influences the exposure (Figure 3). The particularities of the 
causal structures in Figure 3 (including cutoff designs) may 
not have been widely highlighted in the epidemiologic litera-
ture. They are contrasted with structures of Figure 4 (where 
the exposure starts before the beginning of the study), in 
which using linear regression unadjusted for the baseline value 
appears to be the best choice. Finally, the approach points out 
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FIGURE 3.  Causal structures in which the observed outcome 
at the beginning BP(t1)

*, or before the beginning of the study 
BP(t0)

*, influences the exposure E. Subfigures A and C repre-
sent the assumption that BP(t1) does not influence ∆BP. Sub-
figure B represents a causal influence of BP(t1) on ∆BP through 
an unmeasured intermediate variable M.
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critical assumptions to be discussed when some variables con-
found the exposure–outcome relation (Figure 2).

In our view, randomization, confounding through a third 
variable (C) or the observed outcome BP t*( )1  at the begin-
ning of the study, start of the exposure, natural evolution of 
the outcome in time, and intraindividual variability are the 
main points to discuss. Of course, all of the possible causal 
structures cannot be reduced to the few situations described 
above. In particular, more complex combinations implying 
confounders between the exposure and the outcome (as in 
Figure 2) were not described above:

(i) �Confounding between the exposure E and change 
ΔBP through confounders C and through the observed 
BP t*( )1  (combining Figures 2 and 3). In such a case, one 
has to adjust for the baseline outcome level, as well as 
for the set of confounders C. Bias is most likely inevi-
table if C contains unmeasured variables that cannot be 
adjusted for.

(ii) �An early exposure E before the beginning of the study, 
and confounding between E and change ΔBP through 
variables C (combining Figures 2 and 4). In such a 
case, one has to apply a linear regression model unad-
justed for the baseline outcome level, but adjusted for 
variables C. Combining Figures 2C and 4A, under the 
assumption of no effect modification of C on blood 
pressure over time, a linear regression analysis unad-
justed for BP*(t1) could still give an unbiased estima-
tion even if some variables in C are unmeasured.

Many of the causal assumptions represented in Figures 1–4 
rely on the analyst’s judgment rather than on observed data.

•	 �The assumption that there are no unmeasured confound-
ers C in Figure 2 is typically untestable.

•	 �More complex measurement errors can be represented in 
DAGs and should be discussed. For example, one might 

draw a direct causal influence from BP(t1) to UBP1 to take 
into account ceiling or floor effects.7 One could consider 
some dependent (with a common parent of UBP1 and 
UBP2) or differential measurement error (with a causal 
effect of E on UBP1 or UBP2).

12 These measurement errors 
could add some bias according to the underlying causal 
structure and the applied estimation method.

•	 �A challenging assumption concerns the potential influ-

ence of BP(t1)→ΔBP. Such an assumption will usually be 
drawn from pathophysiologic knowledge. Furthermore, 
one could consider that a nonlinear functional model would 
be more appropriate to model BP change in that case.

Another recurrent question relates to the effect modification 
of E on change ΔBP by the baseline outcome BP(t1) (or, more 
pragmatically, by the observed value BP t*( )1 ). Following the 
classification provided by VanderWeele et al,18 BP t*( )1

 could 
be an effect modifier by proxy or by common cause in Fig-
ures 1–3 on ΔBP. In these situations, effect modification by 
BP t*( )1  can be estimated by applying a linear regression 
adjusted for BP t*( )1  and appropriately adjusted for the con-
founders C and pre-existing variables P. BP(t1) or BP t*( )1  
cannot be an effect modifier in the causal structures of Figure 
4 because they are descendants of the exposure E (Theorem 1 
in VanderWeele et al18).

Although our paper has focused on linear regressions, 
the causal structures depicted in Figures 1–4 could also be used 
to consider adjusting for BP*(t1) in a logistic regression or a 
time-to-event model when the outcome is defined from ΔBP 
(eg, Y = 1 if ΔBP <−5 mmHg, Y = 0 otherwise). However, 
because these are nonlinear models, path analysis principles 
should not be applied, and the estimated causal effect could 
still be distorted due to measurement error. Analyses of change 
from baseline are complex, and using DAGs turns out to be a 
very useful approach to choosing the most appropriate linear 
model. As these tools rely on partly untestable assumptions 
(such as unmeasured confounding), the analyst should attempt 
to gather meaningful arguments to discuss them. Among other 
approaches, one can test some independence or conditional 
independence relation to check whether the observed data are 
compatible with the assumptions depicted in the DAG. Intra-
individual variability and measurement error could be explored 
through reviews of the literature or repeated measures of the 
outcome at a given time in a subsample of the study popula-
tion. In some cases, corrective methods can be implemented.7 
Plots of the outcome against age can give indications of the 
general shape of the outcome evolution and guide the choice 
of a functional relation between the exposure and the change 
score. Several alternative causal structures can be examined 
to look for potential biases and carry out sensitivity analyses.
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FIGURE 4. Causal structures in which the exposure E starts 
before the beginning of the study. Subfigure A represents 
the assumption that BP(t1) does not influence ∆BP. Subfigure 
B represents a causal influence of BP(t1) on ∆BP through an 
unmeasured intermediate variable M.
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